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A Posteriori Error Bounds for Numerical Solutions 
of the Neutron Transport Equation 

By Niel K. Madsen 

Abstract. The theory and application of a method for computing rigorous a posterior 
error bounds for numerical solutions to time-independent neutron transport problems are 
presented. The bounds are obtained for the L2 and L1 norms of the error function. 

Introduction. When an approximate numerical solution to a neutron transport 
problem is computed, it is usually not known just how accurate the solution may be. 
Therefore, it would be useful to have a computational procedure which would yield 
bounds on the errors introduced by the numerical approximation. In this paper, a 
method is presented which gives a posteriori error bounds for numerical approxi- 
mations to the time-independent one-velocity linear Boltzmann equation in rec- 
tangular geometry. The bounds are obtained for the L2 and L1 norms of the error. 
Numerical results are also presented. 

Formulation. Let the domain D = (R X 8 be defined by 

(R= {X= (X1, X2, X3): 0 < X1 < a1,0 < X2 < a2, 0 <?X3 ? a3J, 

8 = {Q = (p1, 02, 03): Q + 2 + 3 - 1}. 

The neutron transport problem considered in this paper is to find a function 4 defined 
on D which satisfies the time-independent one-velocity linear Boltzmann equation 

(1) il V.O(X, ( i) + 2 T(X)q(X, il) f s(x, a, Q')4(x, a') d(' = S(x, Q) 

where 
V. denotes the gradient with respect to the variable x, 

T(X), the total cross section at x, is a given bounded positive function which 
is bounded away from zero, 

2 s(x, Q, a'), the differential production cross section from scattering or fission, 
is a given nonnegative function on D X 8 which satisfies f , 8 "(x, , a') dQ' < z T(X) 

for all x E R and Q E 8, 
S(x, Q), the distributed neutron source density, is a given bounded function on D. 
The unknown function +5(x, Q) is called the directional neutron flux at the point 

x in the direction Q. 
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The solution of (1) will be subject to certain conditions to be specified on OR, 
the boundary of (R. Several different types of boundary conditions are frequently 
specified: vacuum, reflecting, periodic, etc. To be more concise, only vacuum boundary 
conditions are explicitly considered in this paper. However, all of the results presented 
are valid for reflecting and periodic boundary conditions (the same analysis techniques 
apply). The vacuum boundary conditions considered are given by 

(2) ?(x, Q) = 0 for x E OR and Q such that Q-n < 0, 

where n is an outward drawn normal at x. 
By a solution 4 of the problem (1), (2), it is meant that O(x + so, Q) is an absolutely 

continuous function of s for almost every (x, Q) E D, and 4 satisfies Eqs. (1) and (2) 
almost everywhere in D. 

This general formulation of the problem has been chosen because it is well known 
([1], [4], [6]) that even with arbitrarily smooth coefficient functions, the solution of the 
transport problem can have singularities in its first derivatives. 

Under essentially the above stated conditions, Vladimirov [6] has proved the 
existence and uniqueness of a solution to the problem (1), (2) provided that S(x, Q) E 

L2(J). The solution 4 is also shown to be in L2Q(). Similar results for the transport 
problem with reflecting and periodic boundary conditions have been established by 
Kellogg [3]. 

A Fundamental Inequality. In this section, an inequality is developed which 
provides the mathematical basis for the a posteriori error bounds procedure. It is 
convenient to define the following function: 

(3) 2; a(X Q) = 2T(X) - f ; (X, Q. Q) ddil. 

The following additional assumptions are made: 

(4) 2a(x, a) > 20 > 0 for almost all (x, Q) E D, 

(5) S(x (, Wa) = S(x, ', Q) for almost all (x, Q. Q') E D X S. 

With the preceding definitions and assumptions the fundamental inequality can 
now be established. 

THEOREM. If 4) is the solution to a transport problem where S C L2(JD), then 

|I4)1L2 -< ? ISI IL. 

Proof. When Eq. (1) is multiplied by 4 and integrated over D, it becomes 

I 
L (l. V72 dx dQ 

(6) + LV zT dx dA 

- + (x, IQ)[ 2S(x, LI, (')q5(x, Q') d'l] d dx = f 4S dx dQ. 
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Using Fubini's theorem, Green's theorem and the boundary condition (2), it is 
easily seen that the first integral appearing in (6) is nonnegative. Using (3) and Fubini's 
theorem, the second two integrals of (6) may be expressed as 

f 
za02 dx dQ + f [8(x, (, (')42(x, Q) 

(7) DXsx 

- S(x, Q '(x, ()q(x, Q')]dx dQ do'. 

The goal now is to show that the second integral in (7) is nonnegative. To accomplish 
this, (5) is now used to give the equality 

8 -S(X Q f))(2(X, l) (xA d , d (' 
sX 8 

(8) 2; S(X, Qj Q',K2(X, il) A dQ dQ' 
2 5x 8 

+ 2 S C(1,( 'S)2(X, (') dxA d Q d'. 
2 x 8 

Using (8), expression (7) may be written as 

(9) f2a02 dx dQ + _ L S(x, (, Q ')[4(x, Q) -_ (x, (Q)]2 dx dQ dQ' 
X ~~~~2 5x 8 

and so the second integral of (7) is nonnegative. Therefore, from (4), (6), (7), (9) and 
Schwarz's inequality, it is seen that 

ZOII4+1IL2 -f JSj Ax dx < 11IL2 IISI IL2 

and the inequality is established. 
An inequality involving the L1 norm of qp can now be established as a corollary 

to the preceding theorem. 
COROLLARY. If q is the solution to a transport problem where S C L2(5)), then 

IkkII1L1 < (47rV) 1|2 

where V is the volume of the domain (R. 
Proof. 

I I I1 = f kl1 dx d Q-< [I| dx d Q]1 *f k1 dx d2 ] 

= (4r V) 1/1 1L2 < (4 IIvsI2 

These inequalities can now be used to compute a posteriori error bounds for a 
given approximation to the solution of a transport problem. For convenience, let 
L denote the neutron transport operator so that Lo = S represents Eq. (1). If 0 is 
a known approximation to the actual solution 4, then the error in the approximation 
is defined as e = - . 

THEOREM. Let the given approximate transport solution 4(x + sQ, Q) be an 
absolutely continuous function of s for almost every (x, Q) C D such that 0 C L2(D) 
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and Lo C L2(D). If cP satisfies (2) almost everywhere then 

11e 11 L ?o I|S - L |IL,2 and IIeIIL|| < (4 V)" |S - LI |L2 IlelL 
?0 

Proof. Applying the transport operator to the error function, it is seen that 

Le = L(45 - = L - L = S- Lo, 

that is, e is the solution to a transport problem where the source is now S - LP. 
The desired bounds now follow easily from the inequalities already developed. 
Since S and p are assumed given, the function S - Lo is known and its L2 norm can 
be computed. 

Practical Implementation. There are several considerations which must be made 
in order to implement the above theorems into a practical computational procedure. 
First, when an approximate solution to a transport problem is obtained, it is usually 
in the form of discrete values at mesh points (xi, y3) and only for certain chosen direc- 
tions Wm. Therefore, some type of "smoothing" process must be specified in order 
to give an approximate solution 0 of the form required. Second, for ease of computing 
integrals and derivatives, the form of 0 must be relatively simple. Finally, most 
approximate solutions for transport problems in rectangular geometry are obtained 
for domains (R of dimension one or two. So, the theory presented here for (R of dimen- 
sion three must be applied in practice for lower dimensions (the same proofs appro- 
priately reduced to lower dimensions apply, so everything remains valid). 

Assume then that 6R is of dimension two and that discrete approximate solution 
values 4i have been obtained by using, for example, a finite difference approximation 
to the solution of the discrete ordinate equations [2] which approximate the transport 
equation. It is assumed that a rectangular mesh (not necessarily uniform) has been 
imposed on (R. Also, 8, which may be visualized as the surface of the unit sphere, 
is assumed to be partitioned into a finite number of segments Am, each being repre- 
sented by a particular direction V EE 8 and having an area of wi, m = 1, 2, , N 
(see Fig. 1). 

z 

FIGUREM1.YParitioning of Oe Octant of te Unit Spher 

FIGURE 1. Partitioning of One Octant of the Unit Sphere 
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FIGURE 2 

The discrete values 4p- are used to define an approximate solution ( over all of OD 
in the following manner. 

Consider a particular mesh box as shown in Fig. 2. If the projection of Wm onto 
the x-y plane lies in quadrants one or three (i.e., WMY- > 0), then a planar function 

= a + bx + cy is defined over each of the triangles ACD and ABC using the 
known discrete values at the vertices. 

If the projection of Qm lies in quadrants two or four (i.e., Q1nu < 0), then a 
similar planar function dim is defined over the triangles ABD and BCD. The final 
approximate solution cP is obtained by extending the functions dim to have values for 
all Q E Am, that is, ?(x, y, U) = cpm(x, y) if Q E Am. Therefore, for each given point 
(x, y) E (R, p is a piecewise constant function of a. The values p assumes on the 
boundaries of each Am are not of real concern as these boundaries are a set of measure 
zero in S. 

From the manner in which 0 has been defined, it is evident that {(x + sPa, U) 
(PQ is the projection of L onto the x-y plane) is an absolutely continuous function 
of s for almost every (x, 0) C D and satisfies the boundary conditions (2) everywhere. 
Also, because of the simple form of the approximate solution, integrals and derivatives 
of 0 can be easily and explicitly computed. For example, the integral f , (x, y, Q) d42 
is easily seen to be EN=1 wm'm(x, y). In actual applications, the functions S, IT, and 1S 
are usually piecewise constant, so that the error bound JIS - LOIILL2/ O can be com- 
puted without difficulty. 

It should be mentioned that the "smoothing" procedure used to obtain O is quite 
arbitrary and the above method was chosen largely because of its simplicity and also 
because it seemed to give better bounds than other simple methods tried. 

Results. A computer program which actually computes the approximate solution 
? and then the L1 and L2 error bounds was written and tested for a number of problems. 
The results obtained for three particular problems are presented. The first problem 
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(see Fig. 3) is a model cell problem with four reflecting boundaries and a rectangular 
source area located in one corner. The second problem (see Fig. 4) is a model shielding 
problem with two reflecting boundaries and two vacuum boundaries and a source in 
the corner formed by the reflecting boundaries. The third problem (see Fig. 5) is 
a more practical type of problem. It comes from an idealization of a seed-blanket 
cell for a pressurized water reactor [5]. 

The L2 error bounds for the three problems are shown in Table 1 and the L, 
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TABLE 1 

L2 Error Bound Results 

Mesh L Error Bound Approximate 
2 E o B n /L2 Relative Error 

Problem 1 

24 x 24 0.052 0.199 26% 

48 x 48 0.036 0.199 18% 

96 x 96 0.026 0.199 13% 

192 x 192 0.018 0.199 9% 

Problem 2 

24 x 24 0.201 0.700 29% 

48 x 48 0.118 0.698 17% 

96 x 96 0.074 0.698 11% 

192 x 192 0.049 0.698 7% 

Problem 3 

44 x 46 0.075 0.271 28% 

88 x 92 0.053 0.271 19% 

176 x 184 0.037 0.271 14% 

TABLE 2 

L1 Error Bound Results 

Mesh L Error Bound Approximate 
iti;L1 Relative Error 

Problem 1 

24 x 24 0.22 0.72 31% 

48 x 48 0.15 0.72 21% 

96 x 96 0.11 0.72 15% 
192 x 192 0.07 0.72 10% 

Problem 2 

24 x 24 4.27 4.9 87% 

48 x 48 2.50 4.9 51% 

96 x 96 1.56 4.9 32% 

192 x 192 0.85 4.9 17% 

Problem 3 

44 x 46 5.1 16.7 31% 
88 x 92 3.5 16.7 21% 

176 x 184 2.5 16.7 15% 
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results in Table 2. The bounds have been computed for various mesh sizes to show the 
effect mesh spacing has on the bounds. All of the problems used an S8 discrete ordinates 
quadrature. To obtain an estimate of the relative size of the bounds, the L2 and L, 
norms of O have been computed and are also presented. 

531 Zircon Way 
Livermore, California 94550 
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